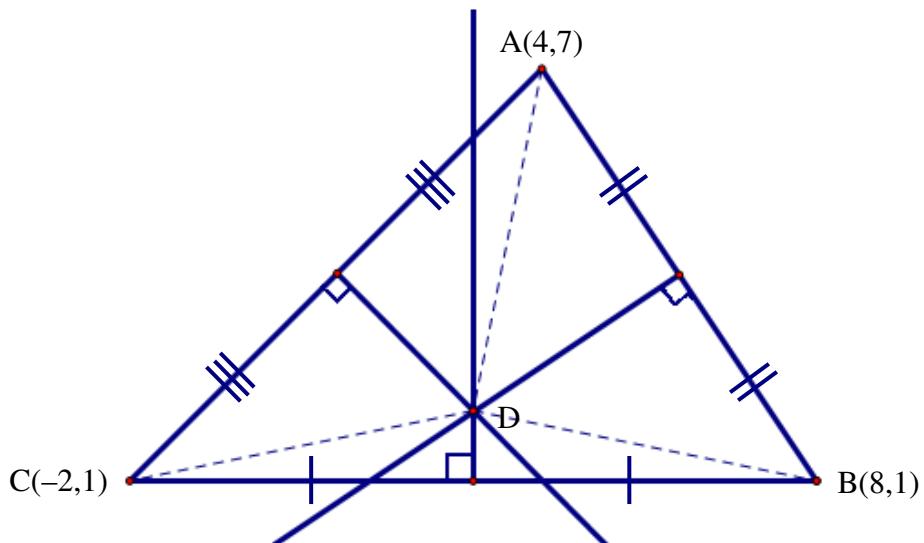


EQUATIONS OF LINES

- 1 Find the equation of the straight line which passes through the point $(-1,2)$ and is:
 - (a) parallel to the line with equation $x = 2$
 - (b) perpendicular to the line with equation $y + 3x = 0$
 - (c) parallel to the line with equation $y - \frac{2}{3}x = 4$
- 2 Find the equation of the perpendicular bisector of the line joining $P(2,3)$ and $Q(8,-1)$.
- 3 Find the equation of the median AD of the triangle ABC where the coordinates of A , B and C are $(-3,2)$, $(-4,-3)$ and $(4,1)$ respectively.
- 4 $D(-2,6)$, $E(0,-3)$ and $F(11,2)$ are the vertices of a triangle DEF .
Find the equation of FG , the altitude from F to DE .
- 5 The perpendicular bisectors of the sides of a triangle are concurrent at a point which is equidistant from the vertices. i.e. $AD = BD = CD$. This point is called the circumcentre.



By solving the equations of two of the perpendicular bisectors, determine the coordinates of point D the circumcentre of triangle ABC.

EQUATIONS OF LINES - SET 2SOLUTIONS

1a) Line $x = 2$ is vertical

\Rightarrow \parallel line through $(-1, 2)$ is $x = -1$

b) $y + 3x = 0$

$$y = -3x$$

$$m_1 = -3$$

$\Rightarrow m_2 = \frac{1}{3}$ as $m_1 \cdot m_2 = -1$ for \perp lines

$$y - b = m(x - a)$$

$$y - 2 = \frac{1}{3}(x + 1)$$

$$3y - 6 = x + 1$$

$x - 3y + 7 = 0$ is \perp to $y + 3x = 0$

through $(-1, 2)$

c) $y - \frac{2}{3}x = 4$

$$y = \frac{2}{3}x + 4$$

$$m_2 = m_1 = \frac{2}{3}$$

$$y - b = m(x - a)$$

$$y - 2 = \frac{2}{3}(x + 1)$$

$$3y - 6 = 2x + 2$$

$$2x - 3y + 8 = 0 \text{ is } \parallel \text{ to}$$

$$y - \frac{2}{3}x = 4 \text{ through } (-1, 2)$$

2

$$P(2, 3) \quad Q(8, -1)$$

Midpoint is $(5, 1)$

$$m_{PQ} = \frac{y_2 - y_1}{x_2 - x_1}$$

$$= \frac{-1 - 3}{8 - 2}$$

$$= -\frac{4}{6}$$

$$m_{PQ} = -\frac{2}{3}$$

$$y - b = m(x - a)$$

$$y - 1 = \frac{3}{2}(x - 5)$$

$$2y - 2 = 3x - 15$$

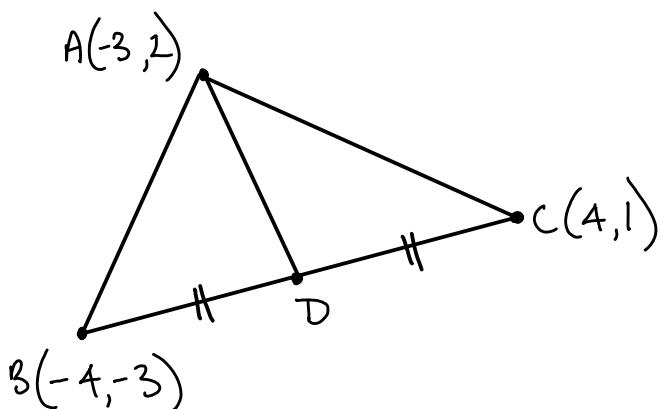
$3x - 2y - 13 = 0$ is equation

of perpendicular bisector of PQ

$$\Rightarrow m = \frac{3}{2}$$

as $m_1 \cdot m_2 = -1$ for \perp lines

3.



$$D(0, -1)$$

$$m_{AD} = \frac{y_2 - y_1}{x_2 - x_1}$$

$$= \frac{-1 - 2}{0 - (-3)}$$

$$= -\frac{3}{3}$$

$$y - b = m(x - a)$$

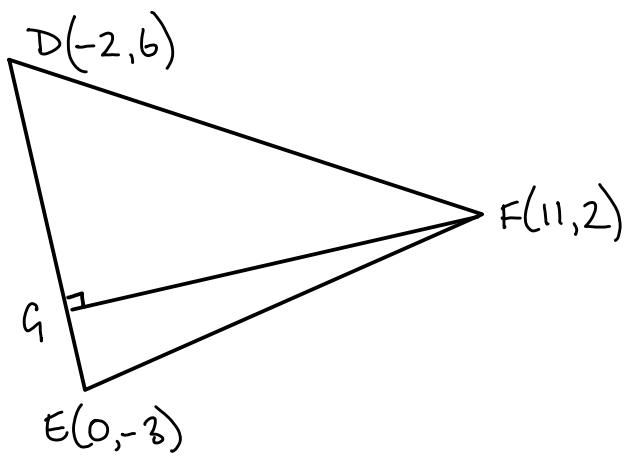
$$y - 2 = -1(x + 3)$$

$$y - 2 = -x - 3$$

$$m_{AD} = -1$$

$x + y + 1 = 0$ is equation of median AD

4.



$$m_{DE} = \frac{y_2 - y_1}{x_2 - x_1}$$

$$= \frac{-3 - 6}{0 - (-2)}$$

$$m_{DE} = -\frac{9}{2}$$

$$y - b = m(x - a)$$

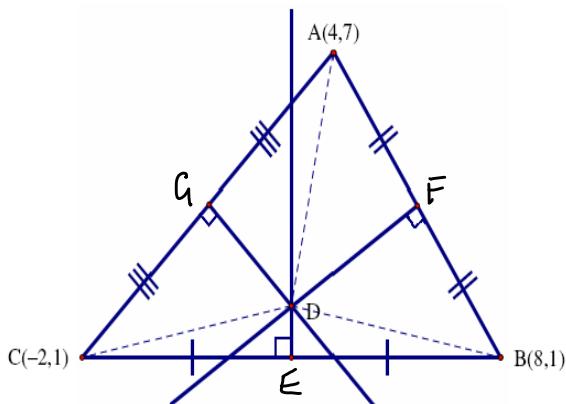
$$\Rightarrow m_{FG} = \frac{2}{9} \text{ as } m_1 \cdot m_2 = -1$$

$$y - 2 = \frac{2}{9}(x - 11)$$

$$9y - 18 = 2x - 22$$

$2x - 9y - 4 = 0$ is equation of altitude FG.

5.



BC horizontal \Rightarrow DE is $x = 3$

$$E(3, 1) \quad F(6, 4) \quad G(1, 4)$$

$$m_{AC} = \frac{y_2 - y_1}{x_2 - x_1}$$

$$= \frac{7 - 1}{4 - (-2)}$$

$$= \frac{6}{6}$$

$$m_{AC} = 1$$

$$\Rightarrow m_{GD} = -1 \text{ as } m_1 \cdot m_2 = -1$$

for \perp lines

$$y - b = m(x - a)$$

$$y - 4 = -1(x - 1)$$

$$y - 4 = -x + 1$$

$$y = 5 - x$$

For points of intersection solve $y = 5 - x$ and $x = 3$

$$\Rightarrow y = 5 - (3)$$

$$y = 2$$

$$\Rightarrow \text{circumcentre at } \underline{\underline{D(3,2)}}$$